If it's not what You are looking for type in the equation solver your own equation and let us solve it.
48x^2-96x+32=0
a = 48; b = -96; c = +32;
Δ = b2-4ac
Δ = -962-4·48·32
Δ = 3072
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3072}=\sqrt{1024*3}=\sqrt{1024}*\sqrt{3}=32\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-96)-32\sqrt{3}}{2*48}=\frac{96-32\sqrt{3}}{96} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-96)+32\sqrt{3}}{2*48}=\frac{96+32\sqrt{3}}{96} $
| -17+12d-20=5d+19 | | -11.07+19.6s=12.1s+0.18 | | 40=y/2+15 | | 9-5x=12-(6x=7) | | 3x2+5x+15=0 | | -4+h=3h | | 8-35x=11 | | 2m-6=11 | | 5/3x=1/15 | | 20x-2=18x+3 | | 6-20s=-2s-12 | | 5m+6m=7 | | x=3/5=10 | | 10f+14=9f | | 3(y+40=24 | | x-2/7=12 | | -5j-12j+1=-13-16j | | 3/x+4=9/14 | | 68=25x | | 4(3x=5)=2 | | 3(3x=4)+2(5x-3) | | -10s-7=-9s | | 7j-2=10j-8 | | 2/3x=1200 | | -6(p+6)/3=3(p+8) | | 9n+19=6n+29 | | -u+10=u | | −13=m/9+8 | | -10+2+2r=10-7r | | 42=(-7)(z-3) | | 4.8r+7=27 | | 4.2y+0.8=6.2y-(1.1y+0.8)+12 |